Sharp large deviation results for sums of independent random variables

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On large deviations for sums of independent random variables

This paper considers large deviation results for sums of independent random variables, generalizing the result of Petrov (1968) by using a weaker and more natural condition on bounds of the cumulant generating functions of the sequence of random variables. MSC 60F10, 60G50, 62E20.

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

On large deviations of sums of independent random variables

Extensions of some limit theorems are proved for tail probabilities of sums of independent identically distributed random variables satisfying the one-sided or two-sided Cramér’s condition. The large deviation x-region under consideration is broader than in the classical Cramér’s theorem, and the estimate of the remainder is uniform with respect to x. The corresponding asymptotic expansion with...

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

Sharp Concentration Inequalities for Deviations from the Mean for Sums of Independent Rademacher Random Variables

For a fixed unit vector a= (a1, a2, . . . , an) ∈ Sn−1, that is, ∑i=1 ai = 1, we consider the 2n signed vectors ε = (ε1, ε2, . . . , εn) ∈ {−1, 1}n and the corresponding scalar products a · ε = ∑i=1 aiεi. In [3] the following old conjecture has been reformulated. It states that among the 2n sums of the form ∑±ai there are not more with ∣ ∣∑i=1±ai ∣ ∣ > 1 than there are with ∣ ∣∑i=1±ai ∣ ∣≤ 1. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Mathematics

سال: 2015

ISSN: 1674-7283,1869-1862

DOI: 10.1007/s11425-015-5049-6